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Abstract
The partitioning of several classical density functionals, including the Thomas–
Fermi (TF), Weizs̈acker kinetic energies and the Dirac exchange energy, are
studied for the partitioned systems that satisfy the orthogonality condition.
The partitioning of the TF kinetic energy shows a raising of the energy of the
valence electrons which is not found for the partitioning of the Weizsäcker
kinetic energy. The partitioning of the Weizsäcker kinetic energy is not unique
and contains a correlation part. The partitioning of the Dirac exchange energy
shows that the exchange energy of a subsystem can be largely influenced by
the other subsystems when this subsystem does not correspond to the lowest
energy subspace. The self-interaction calculated from the partitioned exchange
energies is different from previous results.

PACS number: 31.15.Ew

1. Introduction

The partitioning of a many-particle system is essential when one wants to describe the
properties of the system by only the part that responds mainly to external changes. Variations
range from the real-space partitioning, like the atom-in-molecule method [1, 2], to the state-
space partitioning like the effective core Hamiltonian method [3, 4] as well as the
pseudopotential method [5, 6]. Often, partitioning has been used implicitly by both theoretical
physicists and chemists. It is trivial to partition the system into parts when the single-particle
picture is used. In fact, the single-particle picture can be viewed as an extreme case of
partitioning, i.e. the system is partitioned into subsystems that contain one particle.

The density-functional theory (DFT) associates all the properties of a system with its
ground-state density [7–9]. Several explicit density functionals, such as Thomas–Fermi,
Dirac and Weizs̈acker functionals [10–13], for the kinetic and exchange energy have been
introduced from which the ground-state density can be obtained variationally. Although most
DFT calculations on the real physical systems are based on the Kohn–Sham scheme (KS)
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[14] by mapping the many-particle system to a system containing free particles moving in an
effective potential, those classical functionals remain interesting [15]. Further modifications
of these models have produced very good geometry and electronic properties for some real
systems [16]. On the other hand, the partitioning of the density functionals is not very
well known for either the classical functionals or the commonly used exchange-correlation
functionals in the KS scheme. The studies of the partitioning of the classical functionals can
be helpful for understanding the partitioning of the more sophisticated functionals.

The partitioning problem can sometimes be important to the principles of DFT. One
good example is the self-interaction correction (SIC) [17, 18] of the Coulomb and exchange-
correlation functional in which one needs to partition and then subtract the single particle part
of the functional from its whole. In most cases, the single-particle functionals are assumed to
have the same form as the functional of the total ground-state density. Of course, this is only
exact in the single-particle limit. Taking the Dirac exchange functional as an example, we will
examine the above SIC assumption by a detailed study on the partitioning of the exchange
functional of a free-electron gas.

In this paper, we will discuss the partitioning of the classical density functionals of kinetic
and exchange energy. The partitioning of the Thomas–Fermi (TF) and the von Weizsäcker
kinetic functionals will be discussed in sections 2.1 and 2.2, respectively. In section 3, we
will partition the Dirac or the Kohn–Sham exchange functional into two and three parts and
then discuss the SIC as an application. The mathematical derivation of the partitioning of the
Dirac exchange functional is presented in appendix A.

2. Partitioning of the kinetic functional

2.1. Thomas–Fermi model

The TF model [10, 11] is the first proposed density functional except for the trivial Coulomb
functional. It connects the density summation of the free-electron orbitals

n(r) =
kF∑

k=0

|ψk|2 = k3
F

3π2 (1)

and the kinetic-energy summation

t (r) = 1

4π2

1

2

∫ kF

0
k2 dk3 = 1

10
k5

F (2)

through the Fermi levelkF and has the form

t (r) = CFn(r)
5/3 (3)

with CF = 3
10(3π

2)2/3.

Assuming that the system can be partitioned into two subsystemsX andY with densities
nX(r) andnY (r). Furthermore, let us assume that the two subsystems are orthogonal such
that the densities are additive

n(r) = nX(r) + nY (r). (4)

We will only consider the state-space partitioning and assume systemX always occupies the
states with lower energy. Defining

α = nX(r)

n(r)
(5)
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Figure 1. g function for one (solid line), two (dashed line) and three (dotted line) dimensions.

and

kX = α1/3kF (6)

it is easy to see that the TF relation holds true for theX subsystem

tX(r) = 1

10
k5
X = CFnX(r)5/3 = CFα

5/3n(r)5/3. (7)

For theY subsystem, the kinetic energy density is more complex

tY (r) = 1

10
k5|kF

kX
= 1

10
(1 − α5/3)k5

F

= CF(1 − α5/3)n(r)5/3 = CF
(1 − α5/3)

(1 − α)5/3
nY (r)5/3

= CFg(α)nY (r)5/3. (8)

It reveals that the kinetic energy density of the higher occupied subsystem has a similar form
as TF functional but needs to be corrected by a coefficient functiong that is a local function of
both the partitioned and the total densities. Theg function is plotted in figure 1 (dotted line).
α changes from 1 fornX = n to 0 for nY = n. It is easy to see thatg is 1 whileα is 0 and
goes to infinity whileα becomes 0, which indicates a lift-up of the kinetic energy of the upper
occupied states. In the latter case,tY (r) still goes to 0 becausenY (r) becomes 0 at thenX = n

limit faster thang.
Since the exponent of the TF functional depends on dimensiond, so should theg function.

In general, the exponent of the TF functional is2 +d
d

and the correspondingg function is

1 − α
2 +d
d

(1 − α)
2 +d
d

. (9)

Theg functions for two and three dimensions are also plotted in figure 1. Interestingly,g is
identical to 1 in the high dimension limit, which indicates that the TF functional is completely
partitionable.
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2.2. Weizsäcker kinetic energy

The Weizs̈acker [12] kinetic energy densitytW(r) can be subtracted from the orbital kinetic
energy summation by assuming the orbitals

ψ∗
i (r) = n(r)1/2K∗

i (r) ψi(r) = n(r)1/2Ki(r). (10)

Inserting the above orbitals into the KS kinetic energy, one obtains

t (r) =
∑
i

∇ψ∗
i (r)∇ψi(r) = n(r)

∑
i

∇K∗
i ∇K +

(∇n)2

n

= tW(r) + n(r)
∑
i

∇K∗
i ∇K. (11)

In contrast to the TF functional, there is no unique way to partition the Weizsäcker kinetic
energy density. One routine to partitioning thetW(r) is rather straightforward. Assuming the
density is completely partitionable (see equation (4)),tW(r) can be expressed by the densities
of the subsystemsX andY

tW(r) = |∇(nX + nY )|2
nX + nY

= |∇nX|2
nX

nX

n
+

|∇nY |2
nY

nY

n
+

2∇nX∇nY

n
(12)

= tXW(r) + tYW(r) + tCW(r)

in which tCW(r) is a correlation term.
In another way, we define the Weizsäcker kinetic energy for each subsystem and define the

difference between thetW of the total system and the summation of thetW of each subsystem
as the correlation. For doing it, we assume

ψX∗
i (r) = nX(r)1/2KX∗

i (r) ψX
i (r) = nX(r)1/2KX

i (r)
(13)

ψY∗
i (r) = nY(r)1/2KY∗

i (r) ψY
i (r) = nY(r)1/2KY

i (r)

and calculate the corresponding Weizsäcker kinetic energy densities

tXW(r) = |∇nX|2
nX

tYW(r) = |∇nY |2
nY

(14)

by the same procedure as that used to obtain equation (11). The correlation term is then

tCW(r) = tW(r) − tXW(r) − tYW(r). (15)

For most of the partitioned systems, in practice, the subsystem densities are distributed
mainly in different regions. As an example, the densities of 1s and 2s orbitals of Be are
plotted in figure 2(a). Similar patterns can be found for all the partitionings of the atoms in
the periodic table. The corresponding first- and second-kind partitioned Weizsäcker kinetic
energy densities are shown in figures 2(b) and (c). It can be easily seen that in the core
region, the correlation part of the first kind oftW is much larger than that of the second kind.
Comparing with the total kinetic energy density, the correlation parts of both kinds are small.
It needs to be noted that in the region of valence electrons, the correlation is comparable with
the total and the partitioned kinetic energy densities. For comparison, we also plot the total
and the partitioned TF kinetic energy densities for Be in figure 2(d).

For clarity, the integrated kinetic energies are calculated and listed in table 1. It can be
seen that for all the selected atoms, the correlation parts of both the first and second kinds of the
partitioned Weizs̈acker kinetic energies are small but comparable with the Weizsäcker kinetic
energies of the valence electrons. Generally, the Weizsäcker kinetic energies are smaller than
the KS as well as the TF kinetic energies, especially for large atoms in which the densities are
more smooth. The second way of partitioning the Weizsäcker kinetic energy gives a valence
kinetic energy more similar to the TF partitioning and a negative and smaller correlation term.
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Table 1. The partitioned Thomas–Fermi and Weizsäcker kinetic energy for several selected atoms.

TS TTF T X
TF T Y

TF TW T X
W T Y

W T XY
W T X

W T Y
W T XY

W

Be 14.31 17.12 15.89 1.23 13.36 12.52 0.33 0.51 13.17 1.13−0.44
C 37.19 22.09 19.04 3.05 31.41 28.29 1.50 1.62 31.42 2.60−2.61
Ne 127.74 155.70 111.22 44.49 89.45 75.26 9.16 5.03 91.44 11.09−13.08
Kr 2747.82 3448.46 3408.56 39.89 1271.72 1264.61 2.88 4.23 1273.84 15.65−17.77

3. Partitioning of the exchange functional

3.1. Two-subsystem partitioning

The detailed derivation of the partitioning of exchange functional is lengthy and so is presented
in appendix A. Here we will focus on the physical meaning of the result. For the same
partitioned systemX and Y as sections 2.1. and 2.2., the exchange functionalKD can be
partitioned into the summation of the exchange functional of the subsystems plus an exchange
functional between the two subsystems, i.e.

KD = KX
D + KY

D + KXY
D

= Cx

∫
GX[α(r)] n(r)4/3 dr + Cx

∫
GY [α(r)] n(r)4/3 dr

+Cx

∫
GXY [α(r)] n(r)4/3 dr (16)

in whichCX = 3
4

( 3
π

)1/3
and

GX[α(r)] = α4/3(r)

GXY [α(r)] = [2α(r) − 2α4/3(r)] (17)

GY [α(r)] = [1 − 2α(r) + α4/3(r)]

or in another form

KD = KX
D + KY

D + KXY
D

= Cx

∫
gX[α(r)] nX(r)4/3 dr + Cx

∫
gY [α(r)] nY (r)4/3 dr

+Cx

∫
gXY [α(r)] nX(r)2/3nY (r)2/3 dr (18)

with

gX[α(r)] = 1

gY [α(r)] = [1 − 2α(r) + α4/3(r)](1 − α(r))−4/3 (19)

gXY [α(r)] = [2α(r) − 2α4/3(r)] α(r)−2/3(1 − α(r))−2/3.

The coefficientsG andg are plotted as functions ofα in figures 3(a) and (b), respectively.
It is interesting to know how the exchange energy of the subsystemY will be changed by

the existence of the subsystemX which occupies the lower orbitals. Omitting the effects of
theX subsystem, the coefficient functiong is 1 and the corresponding

G0[α] = (1 − α(r))4/3. (20)

As shown in figure 3(a), in both limits ofα → 0 andα → 1, GY [α] is identical toG0[α].
And more interestingly, whileα = 1/2, i.e. in an equal-partitioning case,nX(r) = nY (r) and
GY [α] = G0[α]. It can be easily imagined that the difference betweenGY [α] andG0[α]
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Figure 2. The total and partitioned Weizsäcker and TF kinetic energy density for beryllium. (a)
The total-, core- and the valence-electron density. (b) The total and the partitioned Weizsäcker
kinetic energy density for the first kind. (c) The total and the partitioned Weizsäcker kinetic energy
density for the second kind. (d) The total and the partitioned TF kinetic energy density.
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Figure 2. (Continued )

should not be too large for the other values of α. In fact, the extreme values of GY [α] −G0[α]
can be obtained from the zero points of its first-order derivative, which is the solution of

α1/3 + (1 − α)1/3 = 3
2 . (21)

Two symmetric solutions are α1 = 0.1791 and α2 = 0.8209. At both points, GY [α] − G0[α]
is about 0.026, which is very small in comparison with the G0(α) values, 0.7686, while
α1 = 0.1791 and 0.1010 while α2 = 0.8209.

The features of the exchange energy between the two subsystems are also revealed by
figure 3. As one may expect, GXY (α) is 0 in both α → 0 and α → 1 limits. But the maximum
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Figure 3. The coefficient-correction functions G and g exchange energies for two-subsystem
partitioning. (a) Function G and (b) function g.
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of the exchange between the subsystems is not at the equal-partitioning point. The extreme
point can again be calculated from the zero point of the first-order derivative of the GXY

function. It is calculated to be α = ( 3
4

)3 = 0.422 and the corresponding GXY function value

is 2
[( 3

4

)3 − ( 3
4

)4
]

= 0.211.

3.2. Three-subsystem partitioning

The three-subsystem partitioning is needed for studying the influence of the occupation
in both lower and higher states on the exchange energy of the intermediate states and the
influence of the occupation of the intermediate states on the exchange between the lower and
higher states. Define the density ratio of the lower, intermediate and higher subsystems, X, Y
and Z as αX, αY and αZ . Obviously,

αX + αY + αZ = 1. (22)

Performing the two-subsystem partitioning twice, one can obtain the G functions for three-
subsystem partitioning as

GX = α
4/3
X

GY = (αX + αY )1/3(αY − αX) + α
4/3
X

GZ = 1 − 2(αX + αY ) + (αX + αY )4/3

GXY = 2αX

[
(αX + αY )1/3 − α

1/3
X

]
(23)

GYZ = 2αY − 2(αX + αY )4/3 + 2αX(αX + αY )1/3

GXZ = 2αX − 2αX(αX + αY )1/3.

Let us first consider the exchange energy of the intermediate subsystem Y. From the GY

function, it can be easily seen that while αX goes to 0, GY becomes GY
0 = α

4/3
Y . Further on,

if αX = αY ,GY = GY
0 = α

4/3
Y . In contrast, in the limit of αY → 0, GY → 2

3αYα
1/3
X , i.e. the

intermediate state gains more exchange energy while there is a large occupation of the lower
states. Figure 4(a) plots the ratio of GY[αX, αY ]/GY

0[αY ] as a function of αX for a series of
values of αY . It is also interesting to see that whileαX < αY , the ratio GY[αX, αY ]/GY

0[αY ] < 1
which indicates a reduction of the exchange energy for the intermediate subsystem caused by
the existence of the lower occupation.

Function GXZ reduces to function G′XY for the two-subsystem partitioning. And while
αY becomes large, GXZ decreases indicating the reduction of the exchange energy between
the two subsystems separated by the intermediate system Y. It can be proved that while
αX/αY → 0,GXZ → 2αX − 2αXα

1/3
Y . This is in contrast to the two-subsystem partitioning

GXY = 2αX − 2αXα
1/3
X . Figure 4(b) plots the ratio GXZ[αX, αY ]/GXY

0 [αX] as a function of
αY at a series of values of αX . The larger value of αX corresponds to a larger exchange energy
between the X and Z subsystems in the range αX < 0.5. At any value of αX, the exchange
energy is reduced by the increasing of αY .

3.3. Self-interaction correction

The SIC improves the LDA results considerably. A typical SIC exchange-correlation energy
is obtained by subtracting the self-interaction part of the original exchange-correlation energy
that has the same functional form but only the density of the single orbital [9, 18]

ESIC
xc [n(r)] = Exc[n(r)] −

N∑
i=1

Exc[ni(r)]. (24)
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Figure 4. (a) The ratio of GY [αX, αY ]/GY
0 [αY ] as a function of αX for a series of values of αY .

(b) The ratio GXZ[αX, αY ]/GXY
0 [αX] as a function of αY at a series of values of αX .

The above formula presumes two assumptions implicitly. First the system is partitionable
and the density of a single particle can be calculated from its orbital. Second, the exchange-
correlation energy for each single orbital has the same form and is identical to the exchange-
correlation energy functional of the total system. In the following, we will presume the first
assumption and discuss the feasibility of the second in our partitioning of the Dirac exchange
energy. For doing it, we need to consider a two- and three-subsystem partitioning in which
one of the subsystems contains only one orbital.

First let us consider the exchange energy of the highest occupied state in the system. This
can be obtained from the partitioned exchange energy for the two-subsystem. Although the
absolute values do not show a large difference between GY [α] and G0[α], their ratio could
deviate from 1 significantly. In fact their derivatives at the point of α = 1 are 0 for G0[α]
and − 2

3 for GY [α]. This indicates that in a large system, the self-interaction of the highest
occupied state can be much larger than it is calculated from the same functional form as the
total exchange energy. Table 2 lists the values of GY [α] and G0[α] for several chosen N.
Although the ratio of GY [α] and G0[α] is unlimited, it increases very slowly as the number
of the electrons increases. At about a hundred electrons this ratio is only about three.

For considering the self-interaction of the intermediate states, we need to consider the
three-subsystem partitioning. The ratio GY [αX, αY ]/GY

0 [αY ] (see figure 4(a)) shows the
deviation of the real self-interaction from the SIC. For a N-electron system, αY = 1/N
and αX relates to the position of the state. If αX → 1, then the higher occupied states are
under consideration and if αX → 0, then the lower occupied states are under consideration.
Figure 4(a) shows that while the state moves from the lower occupation to the higher, the
deviation from SIC becomes larger.
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Table 2. The exchange energy of the highest occupied state for system with N electrons, calculated
from the two-subsystem partitioning.

1 2 3 4 5 10 20 50 100

GY
0 [α] 1 0.397 0.231 0.157 0.117 0.046 0.018 0.0054 0.0022

GY [α] 1 0.397 0.249 0.181 0.143 0.069 0.034 0.0134 0.0067

GY [α]

GY
0 [α]

1 1 1.078 1.152 1.220 1.485 1.840 2.472 3.105

0 20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8
3-subsystem partition
(1/N)1/3

α S
IC

Number of Electrons

Figure 5. The calculated SIC coefficient as a function of the number of electrons, in comparison

with the typical value of
(

1
N

)1/3
.

For the free-electron gas, one way to correct the self-interaction is to subtract the
exchange energy of each orbital. Because the energy density is uniform in real space, a
universal coefficient αSIC can be defined to fulfil the correction. As will be shown this
coefficient only depends on N, i.e. the number of electrons concerned. If the traditional SIC

is used, then the exchange energy density of each orbital is
( 1
N

)4/3
no matter which state is

occupied. The summation of the exchange energy of each orbital offers a correction coefficient

αSIC = N
( 1
N

)4/3 = ( 1
N

)1/3
. So that the larger the system, the smaller the SIC correction.

It is more reliable to use the exchange energy of each orbital obtained from the above three-
subsystem partitioning. Assuming there are M states in the lower occupied subsystem and
one state in the intermediate subsystem for a three-subsystem partitioning of N electrons, the
self-interaction correction coefficient is then

α′
SIC =

N−1∑
M=0

[(
M + 1

N

)1/3 (
1 − M

N

)
+

(
M

N

)4/3
]

. (25)

Figure 5 shows αSIC and α′
SIC as a function of the number of electrons. In contrast to αSIC,

α′
SIC becomes 1

2 at the limit of infinite N.
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4. Conclusions

In this article, we partitioned the classical TF and Weizsäcker kinetic-energy functionals and
the Dirac exchange functional into the functionals of the densities of the subsystems. The
variation of the functionals with the subsystem densities is discussed in detail. The partitioning
of the TF functional lifts up the kinetic energy of the valence electrons while the partitioning of
the Weizsäcker kinetic functional does not. The partitioning of the Dirac exchange functional
reveals that the exchange energy of a subsystem strongly depends on the position of the
system in the state space and is largely influenced by the other subsystems. The corresponding
self-interaction correction is different from previous results.
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Appendix A. Partitioning of the exchange functional through partitioning of density
matrices

Considering a non-degenerate ground state described by a single determinant of the lowest
single-particle orbitals, and its spinless first order reduced matrix (RM)

n1(r, r
′) = 2

occ∑
i=1

ψi(r)ψ
∗
i (r

′) (26)

one can write the exchange-energy functional as

K[n(r)] = 1

4

∫
1

|r − r ′| |n(r, r
′)|2 dr dr ′. (27)

For a free-uniform gas, the single-particle orbitals are the plane waves or confined waves
in a box and the corresponding first-order RM is

n1(r, r
′) = 1

4π3

∫ kF

0
k2 dk

∫ π

0
sin θeikr12 cos θ dθ

∫ 2π

0
dφ

= n(r)

[
sin t − t cos t

t3

]
= n1(r, s) (28)

in which t = kF(r)s. Suppose that the system is partitioned into two subsystems X and Y, and
subsystem X only occupies the lowest orbitals. Then the two subsystems are orthogonal and
their first-order RMs are

nX
1 (r, r ′) = 3nX(r)

[
sin tP − tP cos tP

t3
P

]
(29)

nY
1 (r, r ′) = 3n(r)

[
sin t − t cos t

t3

]
− 3nX(r)

[
sin tP − tP cos tP

t3
P

]

in which

tP = kP(r)s = [3π2nX(r)]1/3s = α1/3kF(r)s = α1/3t . (30)
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The exchange energy functional is now

KD[n(r)] = 1
4

∫ ∫
1
s

[
nX

1 + nY
1

]2
dr ds

= π

∫ ∫ (∣∣∣nX
1

∣∣∣2
+

∣∣∣nY
1

∣∣∣2
+ 2

∣∣∣nX
1

∣∣∣ ∣∣∣nY
1

∣∣∣) s dr ds

= KX
D + KY

D + KXY
D . (31)

Noticing that an orthogonal condition between the two RMs is assumed. It is easy to obtain
the first term which is the exchange energy for X subsystem

KX
D = Cx

∫
nX(r)4/3 dr

= Cx

∫
α4/3(r)n(r)4/3 dr

= Cx

∫
GX[α(r)] n(r)4/3 dr (32)

in which

CX = 3

4

(
3

π

)1/3

= 0.7386. (33)

The exchange energy between the two subsystems is

KXY
D = 2π

∫ ∫ ∣∣∣nX
1

∣∣∣ ∣∣∣nY
1

∣∣∣ s dr ds = 2π
∫ ∫ ∣∣∣nX

1

∣∣∣ (|n1| −
∣∣∣nY

1

∣∣∣) s dr ds

= 2π
∫ ∫ ∣∣∣nX

1

∣∣∣ |n1| sdr ds − 2KX
D . (34)

Since∫ ∞

0

sin t − t cos t

t3

sin tP − tP cos tP
t3
P

t dtp =
∫ ∞

0

sin t − t cos t

t3

sin tP − tP cos tP

t3
P

tP dt

= α1/3

4
(35)

the first term of KXY
D can be obtained by inserting the first-order RMs nX

1 and n1 as

2π
∫ ∫ ∣∣∣nX

1

∣∣∣ |n1| s dr ds = 18π
∫

nX(r)n(r)
1

kPkF
dr

×
∫ ∞

0

sin t − t cos t

t3

sin tP − tP cos tP
t3
P

t dtp

= 18π

4

∫
nX(r)n(r)

1

k2
F

dr = 2Cx

∫
nX(r)n1/3(r) dr. (36)

So that the exchange-energy functional can be obtained as

KXY
D = 2Cx

∫
nX(r)n1/3(r) dr − 2Cx

∫
nX(r)4/3 dr

= Cx

∫
[2α(r) − 2α4/3(r)] n(r)4/3 dr

= Cx

∫
GXY [α(r)] n(r)4/3 dr (37)
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Further on, the exchange-energy functional of Y subsystem is

KY
D = KD − KX

D − KXY
D

= Cx

∫
[1 − 2α(r) + α4/3(r)] n(r)4/3 dr

= Cx

∫
GY [α(r)] n(r)4/3 dr. (38)

Appendix B. Several limit cases of G functions

For three-subsystem partitioning, the exchange-energy density of the intermediate subsystem
is corrected by G function,

GY = (αX + αY )1/3(αY − αX) + α
4/3
X . (39)

While αY is small compared to αX , the G function can be significantly simplified. Notifying
the expansion

(1 + b)1/3 = 1 + b
3 − 2

9b
2 + · · · (40)

and assuming

b = αY

αX

(41)

we will have

GY = α
1/3
X (1 + b)1/3(αY − αX) + α

4/3
X

≈
(
α

1/3
X + 1

3αY α
−2/3
X

)
(αY − αX) + α

4/3
X

≈ 2
3α

1/3
X αY . (42)

Similarly, we can simplify the coefficient-correction function for the exchange energy
between lower and upper subsystems X and Y while they are separated by a large intermediate
system Y

GXZ = 2αX − 2αXα
1/3
Y

(
αX

αY

+ 1

)1/3

≈ 2αX − 2αXα
1/3
Y

(
1 +

1

3

αX

αY

)

≈ 2αX − 2αXα
1/3
Y . (43)
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